Dynamics of the IncW genetic backbone imply general trends in conjugative plasmid evolution.
نویسندگان
چکیده
Plasmids cannot be understood as mere tools for genetic exchange: they are themselves subject to the forces of evolution. Their genomic and phylogenetic features have been less studied in this respect. Focusing on the IncW incompatibility group, which includes the smallest known conjugative plasmids, we attempt to unveil some common trends in plasmid evolution. The functional modules of IncW genetic backbone are described, with emphasis on their architecture and relationships to other plasmid groups. Some plasmid regions exhibit strong phylogenetic mosaicism, in striking contrast to others of unusual synteny conservation. The presence of genes of unknown function that are widely distributed in plasmid genomes is also emphasized, exposing the existence of ill-defined yet conserved plasmid functions. Conjugation is an essential hallmark of IncW plasmid biology and special attention is given to the organization and evolution of its transfer modules. Genetic exchange between plasmids and their hosts is analysed by following the evolution of the type IV secretion system. Adaptation of the trw conjugative machinery to pathogenicity functions in Bartonella is discussed as an example of how plasmids can change their host modus vivendi. Starting from the phage paradigm, our analysis articulates novel concepts that apply to plasmid evolution.
منابع مشابه
The genetic organization and evolution of the broad host range mercury resistance plasmid pSB102 isolated from a microbial population residing in the rhizosphere of alfalfa.
Employing the biparental exogenous plasmid isolation method, conjugative plasmids conferring mercury resistance were isolated from the microbial community of the rhizosphere of field grown alfalfa plants. Five different plasmids were identified, designated pSB101-pSB105. One of the plasmids, pSB102, displayed broad host range (bhr) properties for plasmid replication and transfer unrelated to th...
متن کاملComplete nucleotide sequence and comparative analysis of pPR9, a 41.7-kilobase conjugative staphylococcal multiresistance plasmid conferring high-level mupirocin resistance.
We have sequenced the conjugative plasmid pPR9, which carries the ileS2 gene, which had contributed to the dissemination of high-level mupirocin resistance at our institution. The plasmid backbone shows extensive genetic conservation with plasmids belonging to the pSK41/pGO1 family, but comparative analyses have revealed key differences that provide important insights into the evolution of thes...
متن کاملDifferent pathways to acquiring resistance genes illustrated by the recent evolution of IncW plasmids.
DNA sequence analysis of five IncW plasmids (R388, pSa, R7K, pIE321, and pIE522) demonstrated that they share a considerable portion of their genomes and allowed us to define the IncW backbone. Among these plasmids, the backbone is stable and seems to have diverged recently, since the overall identity among its members is higher than 95%. The only gene in which significant variation was observe...
متن کاملVariable plasmid fitness effects and mobile genetic element dynamics across Pseudomonas species
Mobile genetic elements (MGE) such as plasmids and transposons mobilise genes within and between species, playing a crucial role in bacterial evolution via horizontal gene transfer (HGT). Currently, we lack data on variation in MGE dynamics across bacterial host species. We tracked the dynamics of a large conjugative plasmid, pQBR103, and its Tn5042 mercury resistance transposon, in five divers...
متن کاملBacteriophages Limit the Existence Conditions for Conjugative Plasmids
UNLABELLED Bacteriophages are a major cause of bacterial mortality and impose strong selection on natural bacterial populations, yet their effects on the dynamics of conjugative plasmids have rarely been tested. We combined experimental evolution, mathematical modeling, and individual-based simulations to explain how the ecological and population genetics effects of bacteriophages upon bacteria...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEMS microbiology reviews
دوره 30 6 شماره
صفحات -
تاریخ انتشار 2006